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Abstract

SPARK is a new agent framework, being developed at the Artificial Intelligence Center of
SRI International. Its design has been strongly influenced by its predecessor, PRS, and is based
on the same Belief Desire Intention (BDI) model of rationality. The motivations for the develop-
ment of SPARK include: support for development of large-scale agent applications, principled
representation of procedures that will enable validation and automated synthesis, flexibility
in the delivery platform (including the potential to run on PDAs and mobile platforms), and
built-in support for user advisability of agents.

1 Introduction

This document provides a brief introduction to SPARK. SPARK is a new agent framework, being
developed at the Artificial Intelligence Center of SRI International. Its design has been strongly
influenced by its predecessor, the Procedural Reasoning System (PRS)[5].

PRS was one of the earliest agent-based frameworks, providing a flexible plan execution mechanism
capable of both goal-directed activity and reacting to changes in its execution environment. The
influence of PRS is evidenced by the large family of successors that extend or modify the original
Lisp-based PRS [9, 7, 2, 3, 6, 8, 4].

The PRS family of agent-based languages allow the development of active systems that interact
with a constantly changing an unpredictable world. The problem is divided among a set of agents,
each of which maintains its own knowledge base of beliefs about the world. The agents continually
update their knowledge bases in response to sensory information and reasoning about the state of
the world and can perform actions the change things in the world. At any time, each agent has a
set of tasks that it is trying to achieve. These tasks are either initially given to the agent or are
introduced in response to perceived events or the internal working of the agent. Some tasks can
be achieved by performing primitive actions. Others are achieved by breaking down the task into
simpler tasks using hierarchical decomposition. To do this, the agent has a library of procedures
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Figure 1: A SPARK Agent

that describe possible ways of breaking down the task. To break down the task, the agent chooses
between the possible procedures and creates an intention to execute that procedure1.

SPARK is new member of the PRS family that addresses some key limitations of earlier PRS
systems. SPARK is more careful about handling delays that can cause race conditions, and has
built in support for user advisability of agent. SPARK is designed so that in future it can be
compiled down to efficient code with a small footprint that can fit on a PDA, yet so that it can
also scale to large projects. By being based on Python and/or Java, SPARK avoids the current
licensing and portability constraints of Allegro Common Lisp.

Section 2 describes the basic concepts of SPARK. These concepts are further expanded in the
sections that follow. Section 8 describes planned enhancements to SPARK and section 9 compares
SPARK with PRS.

2 Basic Concepts

Each SPARK interpreter process contains one or more agents. Each agent is embedded in the
world and interacts with the world though sensors and effectors. Each agent has its own knowledge
bases for beliefs and procedures. The knowledge bases are initially loaded from files written in the
SPARK source language, SPARK-L. The knowledge base is then updated by the agent’s sensors
and through the agent executing procedures. The set of procedures that the agent is currently
executing are called the intentions of the agent. At any time an agent may be executing multiple

1Intentions are both (i) a means of reducing the computational complexity faced by an agent by at least temporarily
committing to one procedure and not constantly reconsidering possible ways of performing each task and (ii) a
commitment to a certain behavior that helps coordination when dealing with other agents or human users.
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intentions.

At SPARK’s core is the executor whose role is to manage the execution of intentions. The executor
of an agent repeatedly selects one of the current intentions to process and performs a single step
of that intention. This generally involves performing tests on the agent’s beliefs and, based on
the result, immediately starting to execute some action. Primitive actions cause effects through
the effectors. Non-primitive actions are expanded by the executor according to the procedures the
agent has available. On completion of actions, the beliefs may be updated, which can in turn trigger
the creation of new intentions based on the available procedures.

In general, procedures have local variables to record information. In executing a step of a procedure,
the executor commonly tests the agent’s beliefs and then starts to execute some action based on
those tests. The testing of beliefs is expressed as finding values for local variables that satisfy some
predicate expression. There may be many possible solutions, however the executor commits to
one solution by binding the local variable appropriately, and then proceeds to execute the relevant
action.

2.1 Modules

A SPARK agent’s knowledge is expressed in terms of data values, functions over these data values,
predicates expressing relationships between data values, and tasks that specify activities to be
performed. Tasks include activities such as performing some action, trying to make some condition
true, and combinations of simpler tasks.

The agent’s initial knowledge comes from source files written in the SPARK-L language, where
these files are grouped into hierarchically arranged modules

In SPARK-L there are many cases where there is a need to reference hierarchically arranged objects.
These include files, modules, and the functions, predicates, actions declared within modules. To
refer to such objects within SPARK-L we use the path syntactic construct. A path is written using
“.” to separate the hierarchy levels, for example, foo.bar.aux is a three-level path that we could
use to name a module.

Every spark source file is in a particular module – this is the module that all declarations in the file
are added into. For convenience, the relative path syntactic construct allows a path to be written
relative to the source file’s module. A relative path starts with one or more “.”s. Within a file in
module a.b.c , the relative path name . maps to a.b.c , .d maps to a.b.c.d , .d.e maps to
a.b.c.d.e, and so on. Each additional “.” prefix goes up a level in the hierarchy, thus .. maps to
a.b , ... maps to a , and so on.

The SPARK-L source files for a module specify:

• declarations of named entities such as functions, predicates, and actions. These declarations
specify information about the entity such as how many arguments it takes, and so on.

• definitions of how those entities are implemented – for example that + is defined by a Python
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importfrom: message IsSpam subjectOf sendTo
importfrom: subject
importfrom: person
export: forwardMessage InterestedIn

{defpredicate (InterestedIn $person $subject)}

{defaction (forwardMessage $message)}

{defprocedure forwardMessageUnlessSpam
cue: [do: (forwardMessage $message)]
precondition: (not (IsSpam $message))
body:
[forall: [$person] (InterestedIn $person (subjectOf $message))

[do: (sendTo $person $message)]]
}

{defprocedure reportSpam
cue: [do: (forwardMessage $message)]
precondition: (IsSpam $message)
body: [do: (sendTo SpamCollector $message)]
}

(InterestedIn Bill implementation)
(InterestedIn Bill documentation)
(InterestedIn Bob implementation)

Figure 2: A module written in SPARK-L

function or that located is defined by a set of knowledge base facts, and so on

• a collection of facts that form the agent’s initial beliefs

• a collection of procedures that form the agents initial procedure library

• a set of advice on how to select between procedures

2.2 Example File

Figure 2 shows a simple file written in SPARK-L, the language provided by SPARK for writing
modules. This file imports entities with identifiers IsSpam, subjectOf, and sendTo from the
message module, and imports all entities declared in the subject and person modules (which
presumably include implementation, documentation, Bill, Bob, and SpamCollector).

The file declares four identifiers: InterestedIn names a predicate taking two arguments, forwardMessage
names an action taking one argument, and forwardMessageUnlessSpam and reportSpam name pro-
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cedures. The export: statement allows other files to import declarations of InterestedIn and
forwardMessage.

The definition of InterestedIn and forwardMessage, that is, how they are implemented, is not
specified explicitly in this file. Because of this, they are taken to use the appropriate default
implementation. The default implementations are:

• Functions are functors – simple record-like constructors/deconstructors - as in Prolog

• Predicates are extensional – defined as a set of facts stored in the knowledge base

• Actions are hierarchical – a set of procedures must be written to specify alternative ways of
decomposing the action.

• Constants are symbols – values that represent paths.

The example file includes five pieces of information for the knowledge bases: two procedures that
represent possible ways of performing a forwardMessage action and three facts about people’s
interests.

In this file, there is no ambiguity in the use of identifiers. However, it is not hard to imagine
cases where entities with the same indentifier are imported from different modules, or the the file
declares an entity with the same identifier as one that is imported. Whenever this occurs, the
simple identifier cannot be used to reference the entity. Instead, it is necessary to use a path that
specifies the module that the identifier is from. For example, message.IsSpam (the IsSpam from
the message module) or .forwardMessage (the forwardMessage from the current module).

In the example file, we can see examples of the four main kinds of syntactic expressions:

• Term expressions (TERM) – expressions that (given some variable bindings) denote a specific
data value. These include Bill, (subjectOf $message), and implementation.

• Predicate expressions (PRED) – expressions that denote a relationship between data values.
These include (InterestedIn $person $subject) and (not (IsSpam $message)).

• Task network expressions (TASK) – expressions that specify actions to be performed and
conditions to be achieved. For example, [do: (sendTo SpamCollector $message)].

• Statements (STATEMENT) – top level forms such as {defaction (forwardMessage $message)}.

2.3 Syntactic Structure

At this point it may be helpful to describe the general structure of SPARK-L Terms. The atomic
syntactic elements of SPARK-L are:

INTEGER an integer literal such as 1
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FLOAT a floating point literals such as 1.0

STRING a string literals such as "Hi!". A PATH

PATH a path such as Bill or person.Bill. A PATH consists of an “id”, either an alphanumeric
id (a sequence of letters, digits, and underscores, not starting with a digit), or a special id (a
sequence of characters in -+*/%^&|!?<>=), with an optional prefix (a sequence of alphanu-
meric ids separated by periods). Often a PATH is interpreted as referring to some declared
entity (a function, predicate, action, etc.) through consideration of the local and imported
declarations. In this case we will refer to the PATH as an ENTITY.

TAG a path that ends with “:” such as importfrom: or seq:

VAR a variable such as $x consists of an alphanumeric id prefixed by one or more dollar signs.

Compound syntactic structures are constructed using parentheses (), braces {}, and brackets [].
Brackets are used for collections. Parentheses and braces enclose an ENTITY followed by param-
eters. Braces are used for special syntactic constructs that allow optional keyword parameters.
Braces always introduce a new scope for variables.

In describing compound syntactic structures, we use (X)* to represent zero or more occurrences of
X and (X)? to represent zero or one occurrence of X.

3 Values and Term Expressions

SPARK data types include the primitive types integer, float, and string, and compound types such
as records, lists, and closures of various kinds.

The syntactic structures of the SPARK language that describe data values are TERMs. These
include:

• An INTEGER evaluates to the specified integer, e.g. 1.

• A FLOAT evaluates to the specified floating point number, e.g., 1.34.

• A STRING evaluates to the specified string, e.g., "string".

• A VAR evaluates to the value of the variable, e.g., $x.

• An ENTITY that names a constant evaluates to the value of that constant

• (ENTITY(TERM)*) – where the initial ENTITY names a function – evaluates to the result
of applying the function to the values of the parameters, e.g., (add 1 $x). By convention,
function names begin with a lowercase letter.

• [(TERM)*] evaluates to a list of the given values, e.g., [1 2 3]
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Other TERMs include closures, which are described in Section ??.

Functions whose result does not depend upon the state of the knowledge base are called static
functions. The result of dynamic functions (i.e., fluents) depends deterministically upon the state
of the knowledge base. That is, for any given state of the knowledge base (or any given point
in time) two calls of the same function with the same arguments return the same value, but for
different states of the knowledge base, different results may be returned. For convenience we also
allow non-deterministic functions whose results may vary each time they are called2.

When all the free variables in a term expression are bound, the term expression can be evaluated
to produce a value. In certain circumstances, term expressions containing unbound variables can
be matched to values to bind those variables. For example, the term expression [$x [$y $z]] can
be matched to the value [1 [2 3]], bindings $x to 1, $y to 2, and $z to 3.

Data values in SPARK are governed by a strict principle: the equality of two values is never allowed
to change – if any two values are “equal” at one point in time, then they must always be equal.
This restriction affects the handling of “compound” values, such as lists and records:

• In SPARK, two lists are considered equal if they contain the same sequence of elements.
Since the equality of two lists is not allowed to change, the elements of those two lists are
not allowed to change. Thus lists are immutable data structures in SPARK and destructive
modification of lists is not allowed.

• Similarly, records constructed in SPARK are considered equal if they have the same functor
and the same sequence of argument values. Thus records are immutable data structures in
SPARK.

• It is possible to create “mutable” objects that can be used as values, such as queues. However,
since the equality of two values is not changeable, two “mutable object” values are equal if
and only if they refer to the same object. Thus two different queues may contain the same
elements, but they will never be equal. Not only that – any update to a queue is considered
a change in the agent’s knowledge base and is only allowed at certain restricted times.

4 Predicate Expressions

The syntactic structures of the SPARK language that describe relationships between data values
are predicate expressions, PREDs. These include:

• (ENTITY (TERM)*) – where the initial ENTITY names a predicate – represents the ap-
plication of that predicate to the given values, e.g., (P 1). By convention, predicate names
begin with an uppercase letter.

• (and (PRED)*) is the conjunctive logical connective, e.g., (and (P $x) (Q) (R)).
2Although the semantic interpretation of non-deterministic functions is questionable.
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• (or (PRED)*) is the disjunctive logical connective, e.g., (not (P $y)).

• (not PRED) is logical negation, e.g., (not (P 1)).

• (exists VARLIST PRED) – where VARLIST is [(VAR)*] – is the existential quantifier,
e.g., (exists [$x $y] (P $x $y))

As with functions, we have static, dynamic, and non-deterministic predicates. Predicates whose
solutions do not depend upon the state of the knowledge base are called static functions. A
predicate fluent whose solutions depends deterministically upon the state of the knowledge base is
called dynamic. A predicate whose solutions may be different each time it is tested, even in the
same knowledge base state, is called non-deterministic3.

As in logic programming languages, all occurrence of a variable have the same value. When testing
a predicate expression there may be multiple alternative sets of bindings for the variables that make
the predicate expression true. However, once the executor starts to execute some action, it must
select and commit to one set of bindings for the variables.

In SPARK, each term expression that is used as an argument to a predicate either (i) represents a
unique data value if all the variables in it have previously been bound, or (ii) represents a pattern
to match against data values that the predicate generates, thereby binding any variables in the
term expression that have not previously been bound. In either case, after successfully testing a
predicate, all the (free) variables that appeared in the term expression arguments passed to the
predicate must be bound to data values. For example, if $x is already bound, and we wish to test
the predicate expression, (P $x $y (f $x $z)), the first argument can be evaluated to give a data
value, but the second and third arguments will be treated as patterns to match against possible
values. Once the predicate expression is satisfied, all three variables that appear in the expression
will be bound to data values.

A consequence of the requirement that all variables be bound after successfully testing a predicate
expression means that (= $x $y) is only allowed if at least one of $x or $y is already bound –
otherwise it would be forced to enumerate all possible data values as bindings for $x and $y! This
is unlike Prolog, where X=Y would succeed with variables X and Y unified, but not bound to any
specific value4.

When dealing with compound predicate expressions, this modality of the variables (i.e., whether
they are bound yet or not) is very important:

• In a conjunction, the variables are bound from left to right, so (and (= $x $y) (= $x 1))
would cause an error (unless either $x or $y were already bound), whereas the predicate
expression (and (= $x 1) (= $x $y)) would not result in an error (although it may fail if
either $x or $y is already bound to something other than 1).

• In a disjunction, if any variable, say $y, appears in one disjunct but not another, and is not
already bound prior to the disjunction, then after the disjunction succeeds the variable may

3With dubious semantics as in the case of non-deterministic functions.
4Avoiding true unification and instead using pattern matching makes the implementation of SPARK much simpler.
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or may not be bound. However, SPARK requires the modality of all the variables used in
any expression to be fixed before testing that expression. If $y were to appear in a later term
expression, it may not be possible to know whether that term expression should be treated as
a data value or as a pattern to match a data value. For this reason, SPARK does not allow
a variable that is bound in one disjunct but not another to appear in any later expression.

• SPARK currently applies the Closed World Assumption to predicates and uses negation-as-
failure [1] to test negated predicate expressions, that is, (not (P $x)) is equated with the
failure to prove (P $x)5. If a binding is found for $x that satisfies (P $x), then the negated
expression fails. If no binding is found, the negated expression succeeds, but does not bind
any variables.

SPARK enforces the restriction that in a negated predicate expression, all free variables must
be bound prior to testing the negation. If it did not then negation-as-failure would return
incorrect results.

For example, consider the predicate expression (and (= $x 2) (not (= $x 1))). Testing
this leads to the expected result of $x being bound to 2 and the negation and conjunction
succeeding. Consider what would happen if we were to attempt to test the predicate ex-
pression (and (not (= $x 1)) (= $x 2)) where we have swapped to conjuncts. If $x were
previously unbound, the test of (= $x 1) within the negation would succeed with $x be-
ing bound to 1, causing both the negated expression and the conjunction to fail. SPARK
therefore disallows this second form of the conjunction from being used where $x is not
previously bound. If you indeed want this second behavior, you can get it, but you must
explicitly include the existential quantifier that negation-as-failure is implicitly inserting:
(and (not (exists $x (= $x 1))) (= $x 2))

5 Task Network Expressions

In SPARK, a procedure includes a network of tasks to execute. This network of tasks is expressed
as a task network expression, TASK.

A task network expression may represent a basic task, commonly to perform some action or achieve
some state, or a it may represent a compound task network that is a combination of simpler task
network expressions. Each task network expression can be annotated with modifiers that annotate
expression.

Syntactically, each task network expression is of the form [(TASKTAG)? (MODTAG)*], where
TASKTAG and MODTAG consist of a TAG followed by parameters. If the TASKTAG is left out,
it defaults to the succeed: basic task which immediately succeeds without doing anything. The
MODTAGs are modifiers.

For example, the task
5This will be generalized later to include predicates whose value is unknown. This will enable alternative imple-

mentations of negation and make it possible to have procedures that actively test the value of an unknown predicate.
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[do: (forwardMessage $m)
label: response]

is a basic task network expression that calls for the action (forwardMessage $m) to be performed.
A label response is associated with this task.

5.1 Basic Tasks

The bottom-level tasks in any task network expression are basic tasks. The two main basic tasks
are to perform some action, and to achieve the truth of some predicate. Basic tasks TASKTAGs
include:

• do: ACT – where ACT is (ENTITY (TERM)*) and ENTITY names an action
e.g., [do: (paint $house red)]. This basic task attempts to perform the specified action.
Actions can either be primitive or non-primitive.

– Primitive actions are performed by executing some arbitrary Python or Java code.
– Non-primitive actions are performed by expanding the action using procedures in the

agent’s procedure library. SPARK selects a procedure matching the action for which the
procedure precondition is satisfied. SPARK then executes the body of that procedure.
This may involve executing primitive actions and other non-primitive actions, which also
need to be expanded.

• achieve: PRED
e.g., [achieve: (Color $house red)] This basic task attempts to make the specified pred-
icate true. If the predicate is already true, then the achieve task succeeds immediately.
Otherwise SPARK selects a procedure matching the achieve task and executes the body of
that procedure.

• succeed:
Always succeeds.

• fail: TERM
e.g., [fail: (resource_failure "insufficient paint")] Always fails. The single argu-
ment expresses the reason for failure6.

• context: PRED
e.g., context: (HasBoss $employee $boss)

The context predicate expression is tested. If there is a solution to that predicate expression,
the first generated set of variable bindings is kept. If there is no solution, the task network
expression fails.

• conclude: PRED
e.g., conclude: (P 1)

The given fact is added to the knowledge base (if it is not present). All variables here must
be bound.

6Once the type system is in place, the argument will need to be an instance of the Failure type.
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• retractall: VARLIST PRED
e.g., retractall: [$x] (P $x)

This removes all facts for which some binding of the given variables cause it to match the
given fact pattern.

• retract: PRED
e.g., retract: (P 1)

This removes the given fact from the knowledge base (if it was present). All variables here
must be bound. It is equivalent to retractall: [] PRED

Basic tasks should not use dynamic predicates in their parameters. The value of dynamic functions
depends upon the time that the functions are evaluated. Given that the state of the knowledge
bases may change over the execution of a basic action, the value of any dynamic functions used
in parameters to a basic action may change over the course of execution of that action. Therefore
it is recommended that to avoid unpredictable results, only static functions should be used in
parameters to basic actions that may take an extended time. This recommendation is neither
tested nor enforced by SPARK.

5.2 Compound Task Network Expressions

Compound task network expressions combine simpler task network expressions in different ways:

• Tasks can be executed in parallel or sequentially.

• Conditional execution of tasks is allowed, based on either the truth of predicate expressions
or the successful execution of other tasks.

• Tasks can be iterated. The iteration can be based on the set of solutions for some predicate
expression, based on the truth of some dynamic predicate expression, or explicitly terminated
within the loop body. Variables that are bound only once across multiple iterations are not
very useful, instead the iteration task network expressions allow variables that are local to
each individual iteration. Each time through the loop, there is a fresh set of loop variables7.

Compound task network TASKTAGs include:

• parallel: (TASK)*
e.g., [parallel: [do: (walk)] [do: (chewGum)]]

Executes the subtask networks in parallel. The subtask networks are not (necessarily) exe-
cuted in left to right order. SPARK enforces the restriction that if a variable in the parallel:
task network expression was not bound prior to execution of the task network, then that vari-
able must not appear in more than one subtask network 8. If the execution of a subtask

7Any information required to be kept between iterations can be stored in the knowledge bases.
8This is because we cannot know which of these subtask networks should bind the variable and which should use

the value.
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network fails, then all the other subtask networks that are still running are interrupted and
execution of the parallel task network fails.

• seq: (TASK)*
e.g., [seq: [do: (paint roof red)] [do: (paint walls brown)]]

Executes the given subtask networks in the specified sequence. If any subtask network fails,
the sequence task network fails (with the same reason) without executing subsequent subtask
networks. The knowledge base does not change between starting to execute the seq: and
starting the first subtask network, but changes may occur between the subtask networks.

• select: (PRED TASK)*
e.g., [select: (Tired) [do: (sleep)] (Hungry) [do: (eat)]]

The arguments to the select: compound task network expression are alternating PREDs and
TASKs. Each pair represents a possible alternative execution path. Execution of the select:
task network expressions requires testing the PREDs in order, finding the first PRED that
has a solution, choosing a variable binding corresponding to one solution, and then executing
the corresponding TASK. If no PRED evaluates to true, then the select: task network
expression fails immediately, otherwise its success or failure is the same as the TASK that it
selected to be executed.

The knowledge base does not change between starting to execute the select: and starting
the selected subtask network. Thus both the chosen PRED and any conditions that held at
the start of the select: hold at the start of execution of the chosen subtask network.

In the example above: if the agent is tired and not hungry, it will sleep; if it is hungry and
not tired it will eat; if it is both hungry and tired it will sleep and not eat; if it is neither
hungry nor tired, the select: task network will fail.

The treatment of variables in select: task network expressions is analogous to the treatment
of variables in or predicate expressions – any previously unbound variable that does not
appear in every alternative (PRED-TASK pair) cannot be used after the select: task network
expression.

• wait: (PRED TASK)*
e.g., [wait: (Tired) [do: (sleep)] (Hungry) [do: (eat)]]

This task network expression is very similar to select:, except that instead of failing if none
of the PREDs is true, it waits until one is true. In the example, if the agent is neither tired
nor hungry, it would wait until it was either tired or hungry.

If the predicate expression of one of the alternatives is true immediately after execution
of the wait: task network starts, then the appropriate subtask network starts execution
immediately. If not, a subtask network will start at some later time at which the predicate
expression is true. Because it may be necessary to wait for a predicate expression to become
true, any condition holding at the start of the wait: may no longer be true. However, is is
guaranteed that the PRED for the selected TASK will be true at the start of executing the
TASK. This means that if one of the predicate expressions becomes true, then becomes false
again before the corresponding subtask network has a chance to start, the subtask network will
not start. Instead the wait: task network waits again until one of the predicate expressions
becomes true.
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• try: (TASK TASK)*
e.g., [try: [do: (lift $block)] [conclude: (Succeeded)] [] [do: (panic)]]

The try: task network expression is in some ways similar to the select: task network
expression, but instead of selecting an alternative based on the truth of a predicate expression,
the alternative is selected based on the success of executing a task network expression: In the
example, if the task network expression [do: (lift $block)] succeeds then the task network
expression [conclude: (Succeeded)] is executed. If not, the task network expression [] is
executed immediately. If this succeeds (which it always does) then the task network expression
[do: (panic)] is executed.

SPARK treats the task network expressions as coming in pairs. The first task network
expression of the first pair is executed. If it succeeds, then the second task network expression
in that pair is immediately executed and the success or failure of the try: task network
expression is based on the success or failure of that second task network expression. If it
fails, then the first task network expression of the next pair is immediately executed. If that
succeeds, the second task network expression of that pair is immediately executed and so on.

If none of the executed task network expressions succeeds, then the try: task network ex-
pression fails with the same reason as the last of the executed task network expressions.

The treatment of variables in try: task network expressions is similar to the treatment of
variables in or predicate expressions: any previously unbound variable that does not appear in
every alternative (TASK-TASK pair) cannot be used after the try: task network expression.

There are also iterative compound task network expressions:

• while: VARLIST PRED TASK
e.g., [while: [] (Hungry) [do: (eat pancake)]]

A while task network tests a predicate expression and if it is true attempts to execute the given
subtask network, it then repeats the test and subtask network execution until the predicate
expression is false. If the predicate expression tests false the repeat task network succeeds. If
the subtask network fails for some reason, the while task network fails with the same reason.

• forall: VARLIST PRED TASK
e.g., [forall: [$x] (Wall $x) [do: (paint $x blue)]]

A forall task network finds all solutions for the given predicate expression and then executes
the subtask network for each solution. The list of variables given are local to the predicate
expression and the subtask network and are not visible outside the forall task network expres-
sion. All other variables in the predicate expression and subtask network should be bound
before executing the forall task network.

If all the taskexpr executions succeed then the forall task network expression succeeds. In
the degenerate case of no solutions, the forall task network expression will always succeed. If
one of the subtask network expressions fails, the forall task network expression fails without
executing any further task network expressions.
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5.3 Exceptions: Failures and Errors

It is possible for task (and the task network expressions that contain them) not to complete suc-
cessfully. This occurs when a task raises an exception. There are two kinds of exceptions: failures
and errors:

• Failures occur when context conditions are tested and found to be false, when there are no
procedures applicable for a task being executed, when a procedure explicitly signals failure
by executing a fail: task, and so on. Failures are expected to occur during the execution of
well-written code.

• Errors are exceptions that should not occur in well-written code and correspond to program-
ming errors, such as division by zero, attempting to execute a task with unbound variables
in parameters that disallow them, and so on.

When execution of a task network expression fails (or more generally, raises an exception) rather
than succeeding, the flow of control does not proceed as it would if the task network expression
had succeeded. Instead the failure is propagated up the to a point where the failure is handled by a
try: task network expression – possibly killing of the entire intention if it is not handled anywhere.
Thus if execution of a task network expression fails, the enclosing task network expression will
fail, and so on, stopped only by a task network expression that explicitly handles the failure. Any
variable bindings that a task network expression may have made are undone when that task network
expression fails.

5.4 Variables in Task Network Expressions

In general, the execution of a task network, consists of executing some sequence of basic tasks,
where the order and timing of those basic tasks is directed by the compound task networks. As
preconditions are tested and basic tasks executed, additional variable bindings are made. Once the
executor has committed to a variable binding, that variable binding will remain until either:

• a task network expression in which the variable is bound raises an exception, or

• inside an iterative construct, the loop body that bound the variable finishes (variables that
are bound in a loop body are local to the loop body and are considered fresh variables on
each iteration).

5.5 Modifiers

The following modifiers can be used to annotate the task network expression:

• label: PATH
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This modifier attaches a label to the task network expression for referencing it later.

• comment: STRING

This modifier provides documentation for the task network expression.

6 Closures

Closures are data values that represent “executable” objects constructed from expressions – func-
tions from term expressions, predicates from predicate expressions, and actions from task network
expressions. Closures make it possible to create functions, predicates, and tasks that operate on
other functions, predicates and tasks.

Function closures are data values that represent functions. The closure {fun [$x] (- $x 1)}
is analogous to the lambda expression #’(lambda (x) (- x 1)) in Lisp or lambda x: x - 1 in
Python. The general form of a function closure is {fun VARLIST TERM}. You apply a func-
tion closure to arguments using the applyfun function, thus (applyfun {fun [$x] (- $x 1)} 9)
would evaluate to 8.

Predicate closures are data values that represent predicates. Predicate closures are of the
form {pred VARLIST PRED}. For example {pred [$x $y $z] (and (= $x $y) (= $y $z))}.
You apply a predicate closure to arguments using the applypred predicate, thus
(applypred {pred [$x $y $z] (and (= $x $y) (= $y $z))} 1 1 $a) would succeed with
$a= 1.

Task network closures are data values that encapsulate a task network expression to produce
an action. Task network closures are of the form {task VARLIST TASK}. For example
{task [$x] [wait: (P $x) [retract: (P $x)]]}. You apply a task network closure to
arguments using the applyact: action, thus
[do: (applyact {task [$x] [wait: (P $x) [retract: (P $x)]]} 7)] would wait until
(P 7) is true and then retract (P 7).

The braces introduce a new scope for variables. Any variable such as $x that appears within the
braces is distinct from a variable $x outside the braces. The value of the outer $x can still be
accessed from within the braces, however it must be accessed as the variable $$x. The extra dollar
sign indicates that the variable comes from the immediately enclosing scope not the current scope.
Thus, {fun [$x] (- $x $$y)} is the SPARK equivalent of #’(lambda (x) (- x y)) in Lisp.
Additional dollar signs can be added to specify scopes further out. For example, $$$x would refer
to the variable $x two scopes out. For example, the following obtuse predicate expression evaluates
has two solutions $x=1, $y=4 and $x=2, $y=8:
(and (Member $x [1 2]) (= $y (call {fun [$z] (* $z $$x)} 4)))
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7 File Contents

SPARK-L files are located by means of a logical file system that maps file name paths to physical
files. SPARK uses an environment variable that lists a number of directories. To find the file
corresponding to path a.b.c, SPARK looks for file a/b/c.spark in each of these directories in
order, and selects the first one.

The SPARK-L files contains

• statements used to manage modules and the entity declarations that are visible within the
file,

• statements that declare entities

• facts to be added to an agent’s knowledge base

7.1 Namespaces

Within a SPARK-L source file, entities such as functions and predicates are named by paths. The
namespace of a file is the mapping from paths to entity declarations that is effective for that file.
An entity declaration is visible in a file if it is in the namespace of the file.

SPARK-L files are grouped into modules. Modules are named by paths and are loaded by loading
the file with the same name, the root file. Thus to load module a.b.c, SPARK would load the file
with path name a.b.c which would map to a physical file a/b/c.spark. If the module contains
more than one file, the root file must load in the other files using statements of the form include:
PATH where the PATH names a file. Each of those files must include a statement of the form
module: PATH, e.g., module: a.b.c. The module: statement is optional for the root file.

The root file of a module can make declarations visible in that file available to any other file using
export: statements. An export statement is of the form export: (ENTITY)*. For example, in
file d.e.f the statement export: one two three makes the declarations of one, two, and three
available for other files to use. Another file can add those entity declarations to its own namespace
using a statement of the form importfrom: PATH (PATH)*. For example, in a file a.b.c, the
statement importfrom: d.e.f one two adds to the namespace of file a.b.c the declarations of
entities one and two exported from the module d.e.f. The degenerate form of the importfrom:
statement that leaves out the specific entities to import. This form imports all exported entity
declarations. Thus importfrom: d.e.f would import all three entity declarations.

In general, within a SPARK file the visible entities are named simply by their id, that is a PATH
with no prefix, for example one. However, it is possible to import an entity with the same id as
one that is declared in the module or imported from another module. In this case the use of the
id alone is ambiguous and instead, a prefix must be used to resolve the ambiguity, e.g., a.b.c.one
or d.e.f.one.
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7.2 Declarations

7.2.1 Procedures

Procedures are defined using “defprocedure” statements. The syntax of procedure definitions is as
follows:
{defprocedure ENTITY

cue: CUE
precondition: PRED
body: TASK
(doc: STRING)?
(features: TERMLIST)?
(roles: TERMLIST)?}

Where TERMLIST is a list of TERMs, i.e., [(TERM)*].

Each procedure has a CUE that specifies when to invoke the procedure which is of the following
form 9:

• [newfact: PRED] – instances of this procedures should be invoked (in new intentions) if a
fact of the form PRED is added to the knowledge base.

• [do: ACT] – this procedure shows one possible way of decomposing the action ACT.

• [achieve: PRED] – this procedure shows one possible way of making PRED become true
if it is not already true.

The body of the procedure is a task network expression that is to be executed. A procedure
can optionally specify a documentation string that describes the procedure. You can also associate
features and roles with the procedure that provide information about the procedure and its variables
to the advice mechanism to help with the selection of which procedures to use.

7.2.2 Predicate Declarations

A predicate declaration is of the form

{defpredicate (ENTITY (VAR)*)
(imp: TERM)?
(determined: TERMLIST)?
(doc: STRING)?
(properties: TERMLIST)?}

The doc: argument provides a documentation string for the predicate.
9Other cue types will be added in the future.
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The properties argument provides a way of associating arbitrary information with the predicate.

The determined: argument specifies argument modes (whether the argument is a valid data value
or a pattern to match data values) for which the predicate returns a unique solution. This specifica-
tion is a list of strings, where each string is a sequence of “+”s and “-”s – each character corresponds
to an argument. “+” indicates that the argument must be a data value. “-” indicates that the
argument is allowed to be a pattern. For example the determinism of the equality predicate could
be defined as follows:

{defpredicate (= $arg1 $arg2) determined: ["+-" "-+"]}

This indicates that if $arg1 is a data value ("+-") or if $arg2 is a data value ("-+") then there is
at most one solution to (= $arg1 $arg2).

Note that for any predicate, if all the arguments are data values rather than patterns, then the
predicate can only return at most one solution. Thus if no determined: predinfo is supplied, the
default of determined: ["+...+"] is assumed.

The imp: argument specifies how the predicate is implemented. The default implementation, if this
is not supplied, is to represent the predicate explicitly by a set of facts in the agent’s knowledge
base. For such predicates, the determined: argument affects what happens when a new fact is
concluded: If the existence of a prior fact would cause the predicate to now be non-deterministic
in conflict with the determined mode declarations, then that prior fact is retracted. For example,
if we declare:

{defpredicate (location $object $location) determined: "+-"}

and the fact (location bill kitchen) is in the knowledge base, then concluding (location bill garage)
would cause (location bill kitchen) to be removed from the knowledge base.

You can specify a predicate closure as the implementation for a predicate. This acts as a rule for
defining the predicate in terms of other predicates. For example:

{defpredicate (GrandParent $x $y)
imp: {pred [$x $y] (Parent $x $z) (Parent $z $y)}

You can also specify that the predicate is implemented by a Python or Java function or method. The
following defines the > predicate in terms of the __gt__ function of the Python module operator:

{defpredicate (> $x $y)
imp: (py_predicate "++" (py_mod "operator" "__gt__"))}
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7.2.3 Function Declarations

A function declaration is of the form:

{deffunction (ENTITY (VAR)*)
(imp: TERM)?
(doc: STRING)?
(properties: TERMLIST)?}

The doc: argument provides a documentation string for the predicate.

The properties argument provides a way of associating arbitrary information with the function.

The imp: argument specifies how the function is implemented. The default implementation is for
the function to construct a simple record structure that can be disassembled by pattern matching.
This is similar to the use of functors in Prolog. As with predicates, the implementation can also
be specified as a closure or in terms of Python or java code.

7.2.4 Action Declarations

An action declaration is of the form:

{defaction (ENTITY (VAR)*)
(imp: TERM)?
(doc: STRING)?
(features: TERMLIST)?
(properties: TERMLIST)? }

The doc: argument provides a documentation string for the action.

...

7.2.5 Constant declarations

A constant declaration is of the form:

{defaction ENTITY
(doc: STRING)?
(properties: TERMLIST)? }

...
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7.2.6 Advice Declarations

...

7.3 Facts

The module includes facts to be added to an agent’s knowledge base when the agent loads the
module. These appear as expressions of the form (P 1 (somefun 2)) where p is a predicate
symbol and the arguments contain no free variables.

8 Future Extensions

There are a number of extensions planned for SPARK:

• A framework for communication between SPARK agents.

• Predicate expressions that refer to conditions that hold over a time interval rather than just
at a time point.

• Temporal constraints between tasks.

• A compiler to create code that runs much faster.

• An optional type system to provide support for static type checking where desirable.

• The incorporation of temporal projection techniques to support incremental planning.

9 Comparison with PRS

The key differences between PRS and SPARK are10:

• SPARK guarantees that conditions are tested immediately prior to task execution, avoiding
delays that can lead to race conditions.

• SPARK has built in support for user advisability of agents.

• PRS is written in Lisp, whereas SPARK is currently implemented in Python/Jython. As a
result, SPARK runs on a greater variety of platforms than PRS and has fewer restrictions on
distribution.

10Not all of these features are available in the initial release of the system.
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• For modularity, SPARK has a module system to avoid name clashes among independently
developed parts of an agent.

• SPARK was designed so that agents could be compiled into very efficient code (although the
current implementation it is interpreted).

• In SPARK, procedures, predicate expressions, and functions are first class objects that can be
reasoned about and passed around. The procedure library can be modified on the fly to allow
the agent to incorporate new procedures by concluding and retracting facts in the knowledge
base.

• Like PRS, SPARK does not require type information, but SPARK will have an optional type
system to provide compile-time detection of errors.
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10.1 Timing, Atomicity, and Immediacy

SPARK is very particular about when changes in the knowledge base are allowed to occur. In the
descriptions of the various tasks, modifiers and effects that follow in later subsections, constraints
on the timing of various events are specified.

In SPARK the notion of immediacy is based on changes to the agent’s knowledge base. We use
the phrase “A occurs immediately after B” to mean that no changes to the agent’s knowledge base
occur in-between A and B. We also use the phrase “A occurs atomically” to mean that no changes
to the knowledge base occur during A (other than those caused by A itself).

Some tasks, such as succeed: and fail:, execute atomically. However in general, tasks can take
some nontrivial amount of time, during which the knowledge base may be updated.

Tests of predicate expressions always occur atomically – nothing in the agent’s knowledge base,
neither beliefs nor procedures, is allowed to change during a test. Not only that, where there a task
is conditional on some predicate expression test, execution of the task starts immediately after the
test, ensuring that nothing has invalidated the result of the test.

This atomicity restriction even applies to fluents and predicates that are implemented via procedural
attachments. Although the execution of a task expression is allowed to take an extended time
period, the evaluation of a function or testing of a predicate expression is meant to be effectively
instantaneous (at least with respect to the knowledge bases).
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Copyright

#*****************************************************************************#
#* Copyright (C) 2004 SRI International. All rights reserved. *#
#* *#
#* Redistribution and use in source and binary forms, with or without *#
#* modification, are permitted provided that the following conditions *#
#* are met: *#
#* 1. Redistributions of source code must retain the above copyright *#
#* notice, this list of conditions and the following disclaimer. *#
#* 2. Redistributions in binary form must reproduce the above copyright *#
#* notice, this list of conditions and the following disclaimer in the *#
#* documentation and/or other materials provided with the distribution. *#
#* 3. The name of the author may not be used to endorse or promote products *#
#* derived from this software without specific prior written permission. *#
#* *#
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#* THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR *#
#* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED *#
#* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE *#
#* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, *#
#* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES *#
#* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR *#
#* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) *#
#* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, *#
#* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING *#
#* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE *#
#* POSSIBILITY OF SUCH DAMAGE. *#
#*****************************************************************************#
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